Diamagnetic Group 6 Tetrakis(di-tert-butylketimido)metal(IV) Complexes

Rosanna A. D. Soriaga, Jennifer M. Nguyen, Thomas A. Albright, and David M. Hoffman*
Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States

Received September 13, 2010; E-mail: hoffman@uh.edu

Abstract

The addition of 4 equiv of $\mathrm{LiN}=\mathrm{C}-\mathrm{t}-\mathrm{Bu}_{2}$ to $\mathrm{CrCl}_{3}, \mathrm{MoCl}_{5}$, and WCl_{6} in diethyl ether produced the complexes $\mathrm{M}\left(\mathrm{N}=\mathrm{C}-\mathrm{t}-\mathrm{Bu}_{2}\right)_{4}$ ($M=C r, M o, W$). Single-crystal X-ray diffraction studies revealed that the molecules have flattened tetrahedral geometries with virtual $D_{2 d}$ symmetry in the solid state. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra indicated that the complexes are diamagnetic, and a qualitative MO analysis showed that the orthogonal π-donor and -acceptor orbitals of the ketimide ligand cooperatively split the $\mathrm{d}_{x y}$ and $\mathrm{d}_{z 2}$ orbitals sufficiently to allow spin pairing in the $d_{x y}$ orbital. A more sophisticated quantum-mechanical analysis of $\mathrm{Cr}\left(\mathrm{N}=\mathrm{C}-\mathrm{t}-\mathrm{Bu}_{2}\right)_{4}$ using density functional/molecular mechanics methods confirmed the qualitative analysis by showing that the singlet state is 27 $\mathrm{kcal} / \mathrm{mol}$ more stable than the triplet state.

Homoleptic four-coordinate chromium(IV) complexes with alkyl, ${ }^{1-9}$ aryl, ${ }^{10-13}$ and π-donor ligands, including the wellcharacterized complexes $\mathrm{Cr}\left(\mathrm{NEt}_{2}\right)_{4},{ }^{14,15} \mathrm{Cr}(\mathrm{O}-t-\mathrm{Bu})_{4},{ }^{14,16-18}$ and $\mathrm{Cr}\left(\mathrm{OCH}-t-\mathrm{Bu}_{2}\right)_{4}{ }^{19}$ and heteroleptic $\mathrm{Cr}(\mathrm{O}-t-\mathrm{Bu})_{3}\left(\mathrm{OSi}(\mathrm{O}-t-\mathrm{Bu})_{3}\right),{ }^{20}$ are paramagnetic. Single-crystal X-ray diffraction studies have been performed on several of these complexes, ${ }^{5,7-10,13,19}$ including the alkoxide complexes $\left.\mathrm{Cr}(\mathrm{OCH}-t-\mathrm{Bu})_{4}\right)_{4}$ and $\mathrm{Cr}(\mathrm{O}-t-\mathrm{Bu})_{3}\left(\mathrm{OSi}(\mathrm{O}-t-\mathrm{Bu})_{3}\right),{ }^{19,20}$ and the MX_{4} cores in all cases are essentially tetrahedral. Molybdenum alkyl and aryl complexes are also paramagnetic and have tetrahedral cores. ${ }^{21,22}$

In contrast to the analogous chromium complexes, homoleptic molybedenum(IV) and tungsten(IV) complexes with π-donor ligands display structural diversity. While the MN_{4} core in the amide complex $\mathrm{Mo}\left(\mathrm{NMe}_{2}\right)_{4}$, for example, has a nearly tetrahedral geometry (Chart 1, I), ${ }^{23-25}$ the MO_{4} cores in the alkoxide and aryloxide complexes $\mathrm{Mo}\left(\mathrm{OC}(2 \text {-adamantylidiene)(mesityl) })_{4}\right.$ and $\mathrm{W}(\mathrm{O}-2,6-$ $\left.\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{R}_{2}\right)_{4}(\mathrm{R}=\mathrm{Me}, i-\mathrm{Pr})$ have severely flattened tetrahedral $(\mathrm{Mo})^{26}$ or nearly square-planar (W) geometries (Chart 1, II), ${ }^{27,28}$ and the MS_{4} cores in the thiolate complexes $\mathrm{M}(\mathrm{S}-t-\mathrm{Bu})_{4}[\mathrm{M}=\mathrm{Mo}$ (Chart 1, III), W ${ }^{27,29}$ and $\operatorname{Mo}\left(\mathrm{S}-2,4,6-\mathrm{C}_{6} \mathrm{H}_{2}-i-\mathrm{Pr}_{3}\right)_{4}{ }^{30}$ have elongated and slightly flattened tetrahedral geometries, respectively. All of these Mo and W complexes are diamagnetic because of the ligand π-donor capability. In the tetrahedral and distorted tetrahedral complexes, the π-donor orbital(s) split the lowest-lying two-d-orbital set sufficiently to allow for spin pairing, while in the square-planar complex II, the aryloxide π-donor orbitals push the $\mathrm{d}_{x z}, \mathrm{~d}_{y z}$, and $\mathrm{d}_{x y}$ orbitals up in energy, leaving the $\mathrm{d}_{z^{2}}$ orbital as the HOMO. The smaller $d-d$ exchange energies for second- and third-row metals, whose n d orbitals are more diffuse than 3d orbitals of the first-row metals, and the greater spin-orbit coupling for the second- and third-row metals also favor spin pairing.
In this report, we describe the synthesis and structure of a diamagnetic four-coordinate homoleptic chromium(IV) ketimide complex and its molybdenum(IV) and tungsten(IV) congeners. In the new complexes, the ketimide orthogonal π-donor and -acceptor orbitals uniquely and cooperatively split the lowest-lying d orbitals to allow for spin pairing.

Chart 1. Ball-and-Stick Structures of $\mathrm{Mo}\left(\mathrm{NMe}_{2}\right)_{4}(\mathrm{I})$, $\mathrm{W}\left(\mathrm{O}-2,6-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}\right)_{4}$ (II), and $\mathrm{Mo}(\mathrm{S}-\mathrm{t} \text {-Bu) })_{4}$ (III)

Chromium trichloride was allowed to react with $\mathrm{LiN}=\mathrm{C}-t-\mathrm{Bu}_{2}$ in diethyl ether to produce $\mathrm{Cr}\left(\mathrm{N}=\mathrm{C}-t-\mathrm{Bu}_{2}\right)_{4}$ as dark-amber crystals in 49% yield. Similar procedures using MoCl_{5} and WCl_{6} produced, respectively, blue and blue-green crystals of $\mathrm{M}\left(\mathrm{N}=\mathrm{C}-t-\mathrm{Bu}_{2}\right)_{4}[\mathrm{M}$ $=\mathrm{Mo}(76 \%), \mathrm{W}(64 \%)]$. The formation of high-valent group VI complexes via nonstoichiometric reactions, such as the reactions in these examples, has been observed previously. ${ }^{15,23}$ The chromium and molybdenum complexes sublime cleanly under vacuum (92-94 and $84-86{ }^{\circ} \mathrm{C}$, respectively, at 55 Torr), while the tungsten analogue decomposes when heated under vacuum to form an unidentified yellow material. Each complex revealed a sharp, unshifted singlet resonance in the ${ }^{1} \mathrm{H}$ NMR spectrum attributable to the tert-butyl protons and sharp, unshifted resonances arising from the ketimide and tert-butyl carbon atoms in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectra. The NMR data are consistent with diamagnetic complexes.

Single-crystal X-ray diffraction studies were performed on the Cr (Figure 1), Mo (Figure 2), and W complexes. The tungsten complex was severely disordered and is not shown; the final structural model for the tungsten complex was chosen to correspond closely to the molybdenum structure. In the solid state, the complexes have virtual $D_{2 d}$ symmetry with flattened tetrahedral MN_{4} cores. In the cores, the two opposite large $\mathrm{N}-\mathrm{M}-\mathrm{N}$ angles average 136,133 , and 129° and the four smaller angles average 98, 99 , and 100° for the complexes with $\mathrm{M}=\mathrm{Cr}$, Mo, and W , respectively. The $\mathrm{M}-\mathrm{N}$ bond lengths, which vary only slightly within each molecule, are $1.78,1.88$, and $1.88 \AA$ for $\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}$, and W , respectively. In contrast to the flattened tetrahedral structures found in these d^{2} complexes, the d^{0} complex $\mathrm{Hf}\left(\mathrm{N}=\mathrm{C}-\mathrm{t}-\mathrm{Bu}_{2}\right)_{4}$ has an undistorted tetrahedral MN_{4} core. ${ }^{31}$

If the complexes had tetrahedral cores and the ligands had no π-donor or -acceptor capability, a two-below-three splitting of the d orbitals and a triplet ground state would be expected. The ketimide ligand, however, is both a single-faced π-donor and -acceptor ligand in which the π-donor and -acceptor orbitals are orthogonal to each other (Chart 2, IV). In $D_{2 d}$ symmetry and with the orientation of the ketimide ligand substituents found in the solid state, the ligand π-donor orbital interacts with $\mathrm{d}_{z^{2}}$, pushing it up in energy relative to $\mathrm{d}_{x y}$, while the ligand π-acceptor orbital interacts with $\mathrm{d}_{x y}$, pushing it down in energy relative to $\mathrm{d}_{z^{2}}$. The net result is a splitting between $\mathrm{d}_{z^{2}}$ and $\mathrm{d}_{x y}$, with the former higher in energy (Chart 2, V). Because the NMR data indicate that all three complexes are diamagnetic, the splitting must be large enough to allow spin pairing of the two

Figure 1. Molecular structure of $\mathrm{Cr}\left(\mathrm{N}=\mathrm{C}-t-\mathrm{Bu}_{2}\right)_{4}$. The thermal ellipsoids are 40% equiprobability envelopes, and hydrogen atoms have been omitted. Only one orientation of each disordered tert-butyl group is shown. Selected bond lengths (\AA) and angles (deg): $\mathrm{Cr}-\mathrm{N} 1,1.7840(17) ; \mathrm{Cr}-\mathrm{N} 2,1.7850$ (17); $\mathrm{N} 1-\mathrm{C} 1,1.265(3) ; \mathrm{N} 2-\mathrm{C} 10,1.262(3) ; \mathrm{N} 1-\mathrm{Cr}-\mathrm{N} 1^{\prime}, 136.09(11) ; \mathrm{N} 2-\mathrm{Cr}-\mathrm{N} 2^{\prime}$, 136.16(10); $\mathrm{N} 1-\mathrm{Cr}-\mathrm{N} 2,98.21(7) ; \mathrm{N} 1-\mathrm{Cr}-\mathrm{N} 2^{\prime}, 97.84$ (7).

Figure 2. Molecular structure of $\mathrm{Mo}\left(\mathrm{N}=\mathrm{C}-t-\mathrm{Bu}_{2}\right)_{4}$. The thermal ellipsoids are 40% equiprobability envelopes, and hydrogen atoms have been omitted. Only one orientation of each disordered tert-butyl group is shown. Selected bond lengths (\AA) and angles (deg): $\mathrm{Mo}-\mathrm{N} 1,1.880(2)$; $\mathrm{Mo}-\mathrm{N} 2,1.885(2)$; $\mathrm{N} 1-\mathrm{C} 1,1.270(3) ; \mathrm{N} 2-\mathrm{C} 10,1.271(3) ; \mathrm{N} 1-\mathrm{Mo}-\mathrm{N}^{\prime}, 132.26(13) ; \mathrm{N} 2-\mathrm{Mo}-\mathrm{N} 2^{\prime}$, 132.67(13); $\mathrm{N} 1-\mathrm{Mo}-\mathrm{N} 2$, 99.43(9); $\mathrm{N} 1-\mathrm{Mo}-\mathrm{N}^{\prime}$, 99.27(9).
electrons in $\mathrm{d}_{x y}$ even in the case of the chromium complex. On the basis of the MO analysis, the experimentally observed distorted tetrahedral geometry is a compromise of competing interactions, with the ligand π-donor $-\mathrm{d}_{z^{2}}$ interaction favoring a tetrahedral geometry and the ligand π-acceptor $-\mathrm{d}_{x y}$ interaction favoring a square-planar geometry. In related studies, Wolczanski, Cundari, and co-workers ${ }^{32}$ attributed the contrasting structures found in the heteroleptic complexes $\left(t-\mathrm{Bu}_{3} \mathrm{SiO}\right)_{3} \mathrm{MX}$ (trigonal monopyramidal for $\mathrm{M}=\mathrm{Mo}$ and $\mathrm{X}=\mathrm{Cl}$ or Et but flattened tetrahedral for $\mathrm{M}=\mathrm{W}$ and $\mathrm{X}=\mathrm{Cl}$ or Me) to stronger $n \mathrm{~d}_{z^{2}}-(n+1)$ s mixing for W than for Mo. Only $\left(t-\mathrm{Bu}_{3} \mathrm{SiO}\right)_{3} \mathrm{WCl}$ was found to have a singlet ground state.

Density functional calculations were performed to confirm the qualitative MO analysis. ${ }^{33-37}$ For the geometry-optimized model compound $\mathrm{Cr}\left(\mathrm{N}=\mathrm{CH}_{2}\right)_{4}$, the calculations showed that the singlet state is $20 \mathrm{kcal} / \mathrm{mol}$ more stable than the triplet. Both states have $D_{2 d}$ geometries; the $\mathrm{N}-\mathrm{Cr}-\mathrm{N}$ angles were found to be 121 and 114° for the singlet and triplet states, respectively. Similarly, for $\mathrm{Cr}\left(\mathrm{N}=\mathrm{C}-t-\mathrm{Bu}_{2}\right)_{4}$, quantum mechanics/molecular mechanics (QM/ MM) calculations ${ }^{38}$ showed that the singlet state is $27 \mathrm{kcal} / \mathrm{mol}$ more stable than the triplet state with the optimized singlet geometry very close to the flattened tetrahedral geometry found in the solid state (average $\mathrm{N}-\mathrm{Cr}-\mathrm{N}$ angles $=136$ and 98° and $\mathrm{Cr}-\mathrm{N}$ distance $=1.76 \AA$). The optimized geometry for the triplet state is similar to the singlet-state geometry, with average $\mathrm{N}-\mathrm{Cr}-\mathrm{N}$ angles of 127 and 102° and a $\mathrm{Cr}-\mathrm{N}$ distance of $1.82 \AA$. Consistent with the qualitative MO analysis, in both $\mathrm{Cr}\left(\mathrm{N}=\mathrm{CH}_{2}\right)_{4}$ and $\mathrm{Cr}\left(\mathrm{N}=\mathrm{C}-t-\mathrm{Bu}_{2}\right)_{4}$
the ground-state HOMO and LUMO are $\mathrm{d}_{x y}$ and $\mathrm{d}_{z}{ }^{2}$, respectively. There are substantial HOMO-LUMO gaps in both cases (2.0 and 1.9 eV for $\mathrm{Cr}\left(\mathrm{N}=\mathrm{CH}_{2}\right)_{4}$ and $\mathrm{Cr}(\mathrm{N}=\mathrm{C}-t-\mathrm{Bu})_{2}$, respectively).

Chart 2. Orthogonal π-Donor and π-Acceptor Orbitals of the Ketimide Ligand (IV) and the HOMO and LUMO of $D_{2 d}$ $\mathrm{M}\left(\mathrm{N}=\mathrm{C}-t-\mathrm{Bu}_{2}\right)_{4}$ Complexes (V)

In the ${ }^{1} \mathrm{H}$ NMR spectra of the $\mathrm{M}\left(\mathrm{N}=\mathrm{C}-t-\mathrm{Bu}_{2}\right)_{4}$ complexes, the tert-butyl groups give rise to a sharp singlet. If the $D_{2 d}$ solid-state structures were retained in solution, the tert-butyl groups should give rise to two singlets. An ${ }^{1} \mathrm{H}$ NMR spectrum recorded at -70 ${ }^{\circ} \mathrm{C}$ for a toluene- d_{8} solution of $\mathrm{Cr}\left(\mathrm{N}=\mathrm{C}-t-\mathrm{Bu}_{2}\right)_{4}$ showed only broadening of the resonance arising from the tert-butyl groups. Rotation about the MN bonds is one possible mechanism to account for the fast exchange of the tert-butyl groups. A meshed-gear-like rotation about two or more $\mathrm{M}-\mathrm{N}$ bonds is probable to accommodate the large tert-butyl substituents. Alternatively, a $D_{2 d} \rightarrow D_{4 h} \rightarrow D_{2 d}$ (i.e., flattened tetrahedral \rightarrow square-planar \rightarrow flattened tetrahedral) mechanism also accounts for the observed spectra. Preliminary QM/ MM calculations on $\mathrm{Cr}\left(\mathrm{N}=\mathrm{C}-t-\mathrm{Bu}_{2}\right)_{4}$ have suggested that a geared rotation about two $\mathrm{Cr}-\mathrm{N}$ bonds is the lower-energy pathway. There is ample precedent, however, for square-planar geometries that are energetically accessible for low d-electron counts: $d^{2} \mathrm{~W}(\mathrm{O}-2,6-$ $\left.\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{R}_{2}\right)_{4}(\mathrm{R}=\mathrm{Me}$ or i-Pr $),{ }^{27,28} \mathrm{~d}^{3} \operatorname{Re}\left(\mathrm{~N}=\mathrm{C}-t-\mathrm{Bu}_{2}\right)_{4},{ }^{31}$ and d^{3} $\mathrm{M}\left(\mathrm{N}=\mathrm{C}-t-\mathrm{Bu}_{2}\right)_{4}(\mathrm{M}=\mathrm{Fe} \text { and } \mathrm{Os})^{31,39}$ all have square-planar geometries.

Acknowledgment. Dr. James Korp provided technical assistance with the crystal structure determinations. The Robert A. Welch Foundation (Grant E-1206) provided support for this research. J.M.N. was partially supported by the University of Houston Honors College as a 2010 Summer Undergraduate Research Fellow.

Supporting Information Available: Experimental procedures, complete ref 33, and crystallographic data (CIF) for $\mathrm{M}\left(\mathrm{N}=\mathrm{C}-t-\mathrm{Bu}_{2}\right)_{4}$ $(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Bower, B. K.; Tennent, H. G. J. Am. Chem. Soc. 1972, 94, 2512.
(2) Mowat, W.; Shortland, A.; Yagupsky, G.; Hill, N. J.; Yagupsky, M.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1972, 533.
(3) Mowat, W.; Shortland, A. J.; Hill, N. J.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1973, 770.
(4) Kruse, W. J. Organomet. Chem. 1972, 42, C39.
(5) Gramlich, V.; Pfefferkorn, K. J. Organomet. Chem. 1973, 61, 247.
(6) Müller, J.; Holzinger, W. Angew. Chem., Int. Ed. Engl. 1975, 14, 760; Angew. Chem. 1975, 87, 781.
(7) Cardin, C. J.; Cardin, D. J.; Roy, A. J. Chem. Soc., Chem. Commun. 1978, 899.
(8) Cardin, C. J.; Cardin, D. J.; Kelly, J. M.; Norton, R. J.; Roy, A.; Hathaway, B. J.; King, T. J. J. Chem. Soc., Dalton Trans. 1983, 671.
(9) Schulzke, C.; Enright, D.; Sugiyama, H.; LeBlanc, G.; Gambarotta, S.; Yap, G. P. A.; Thompson, L. K.; Wilson, D. R.; Duchateau, R. Organometallics 2002, 21, 3810
(10) Stavropoulos, P.; Savage, P. D.; Tooze, R. P.; Wilkinson, G.; Hussain, B.; Motevalli, M.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1987, 557.
(11) Seidel, W.; Bürger, I. Z. Anorg. Allg. Chem. 1976, 426, 155.
(12) Alonso, P. J.; Forniés, J.; García-Monforte, M. A.; Martín, A.; Menjón, B.; Rillo, C. Chem.-Eur. J. 2002, 8, 4056.
(13) Alonso, P. J.; Forniés, J.; García-Monforte, M. A.; Martín, A.; Menjón, B.; Rillo, C. J. Organomet. Chem. 2007, 692, 3236.
(14) Basi, J. S.; Bradley, D. C. Proc. Chem. Soc. 1963, 305.
(15) Basi, J. S.; Bradley, D. C.; Chisholm, M. H. J. Chem. Soc. A 1971, 1433.
(16) Hagihara, M.; Yamazaki, H. J. Am. Chem. Soc. 1959, 81, 3160.
(17) Alyea, E. C.; Basi, J. S.; Bradley, D. C.; Chisholm, M. H. J. Chem. Soc., Chem. Commun. 1968, 495.
(18) Thaler, E. G.; Rypdal, K.; Haaland, A.; Caulton, K. G. Inorg. Chem. 1989, 28, 2431.
(19) Bochmann, M.; Wilkinson, G.; Young, G. B.; Hursthouse, M. B.; Malik, K. M. A. J. Chem. Soc., Dalton Trans. 1980, 1863.
(20) Fujdala, K. L.; Tilley, T. D. Chem. Mater. 2001, 13, 1817.
(21) Kolodziej, R. M.; Schrock, R. R.; Davis, W. M. Inorg. Chem. 1988, 27, 3253.
(22) Arnold, J.; Wilkinson, G.; Hussain, B.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1989, 2149.
(23) Bradley, D. C.; Chisholm, M. H. J. Chem. Soc. A 1971, 2741.
(24) Chisholm, M. H.; Cotton, F. A.; Extine, M. W. Inorg. Chem. 1978, 17, 1329.
(25) Baker, R. T.; Krusic, P. J.; Tulip, T. H.; Calabrese, J. C.; Wreford, S. S. J. Am. Chem. Soc. 1983, 105, 6763.
(26) Soo, H. S.; Figueroa, J. S.; Cummins, C. C. J. Am. Chem. Soc. 2004, 126, 11370.
(27) Listemann, M. L.; Dewan, J. C.; Schrock, R. R. J. Am. Chem. Soc. 1985, 107, 7207.
(28) Listemann, M. L.; Schrock, R. R.; Dewan, J. C.; Kolodziej, R. M. Inorg. Chem. 1988, 27, 264.
(29) Otsuka, S.; Kamata, M.; Hirotsu, K.; Higuchi, T. J. Am. Chem. Soc. 1981, 103, 3011.
(30) Roland, E.; Walborsky, E. C.; Dewan, J. C.; Schrock, R. R. J. Am. Chem. Soc. 1985, 107, 5795.
(31) Soriaga, R. A. D.; Hoffman, D. M. Unpublished results.
(32) Kuiper, D. S.; Douthwaite, R. E.; Mayol, A.-R.; Wolczanski, P. T.; Lobkovsky, E. B.; Cundari, T. R.; Lam, O. P.; Meyer, K. Inorg. Chem. 2008, 47, 7139.
(33) Frisch, M. J.; et al. Gaussian 03, revision D.01; Gaussian, Inc.: Wallingford, CT, 2004.
(34) The geometry optimizations used the B3LYP functional with the LANL2DZ basis set. ${ }^{35}$ Single-point calculations to compute relative singlet-triplet energies employed the BP86 functional with the LANL2TZ(f) basis set ${ }^{36}$ for Cr and the $6-311 \mathrm{G}^{* *}$ basis set ${ }^{37}$ for C, N, and H .
(35) (a) Hay, P. J.; Wadt, W. J. J. Chem. Phys. 1985, 82, 270. (b) Hay, P. J.; Wadt, W. J. J. Chem. Phys. 1985, 82, 284. (c) Hay, P. J.; Wadt, W. J. J. Chem. Phys. 1985, 82, 299.
(36) Roy, L. E.; Hay, P. J.; Martin, R. L. J. Chem. Theory Comput. 2008, 4, 1029.
(37) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.
(38) The QM/MM ONIOM calculations used the UFF MM method for the tertbutyl groups, and the remainder of the molecule was treated as described in ref 34.
(39) Lewis, R. A.; Wu, G.; Hayton, T. W. J. Am. Chem. Soc. 2010, 132, 12814.

JA108265Y

